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ABSTRACT 

Road traffic accidents is trending  one of the challenges that have drawn the attention of 

researchers, statisticians, road users, families, business men, economy and the general public. 

Some of these challenges arising from Road traffic crashes include; death of loved one, fractures, 

loss means of livelihood and other various degrees of injury, therefore, it is against this 

background that this study was targeted at modeling Road traffic crashes in Nigeria using Poisson 

Regression model, while the specific objectives of the study include; assessing factors that 

contribute to high rate of road traffic crashes.  Secondly, to fit an appropriate model to data on 

road traffic crashes in Nigeria and to examine the already estimated model used in determining 

and modeling road traffic crashes in Nigeria. The data for the study was sourced for and extracted 

from the Federal Road Safety online database from the year 1960-2018. The data extracted were 

used in the simulation of Poisson Regression models with the aid of statistical software called 

STATA version 14. The results obtained from the analysis revealed that the Poisson regression 

could not capture over-dispersion. So, other forms of Poisson Regression models such as the 

Negative Binomial Regression and Generalized Negative Binomial Regression were also used in 

the estimation. However, the Negative Binomial Generalized Regression Model contains the least 

Akaike Information Criterion (AIC) based on the selections of the overall best-fitted model. Hence, 

recommendations were made based on the results from the findings.    
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INTRODUCTION 

1.1 Background to the Study 
Every year more than a million people die as a result of road-related crashes worldwide, and some 

million sustained one injury to the other and according to World Health Organization (WHO, 

2004), this might likely increase by 65 per cent in the next 20 years due to rapid increase in 

purchase of motor vehicle and usage in large developing countries.The emergence of globalization 

in the world today had led to a high demand in vehicular movement and other mobile devices. The 
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movement of vehicle and other related traffic activities has become a key driver to economic 

growth; therefore, this call for the need for expansions of the transportation industry.  

 

According to Atunbi (2009), Road traffic crashes are the leading causes of death among adolescent 

and younger people in their  prime age. There has been a surge in the proportion, and an absolute 

number of traffic fatalities witnessed in several developing countries of the world while the 

industrial nations are experiencing decrease in downward trend in the occurrence of road traffic 

crashes by more than 20% (Emenike and Ogbole, 2008). They further opined that road traffic 

crashes situation in Nigeria has been alarming and particularly disturbing ever since the first auto 

crash was recorded. Sequel to the above disturbing facts, there is a need to develop a statistical 

approach in estimating road traffic crash with a view to establish safety technique to use in averting 

road traffic crashes in Nigeria. To develop a statistical approach in estimating road traffic crashes 

Cameron and Trivedi (1998) revealed that Poisson and Negative Binomial regression analysis are 

the best techniques to be used in modeling road traffic crashes data that appears in discreet or 

countable form. They further opined that Poisson and Negative Binomial regression are often 

applied in studying the occurrence of events that appears in countable form and also as a function 

of a set of predictor variable in an experimental and observational study in many disciplines 

including; Economics, Demography, Psychology, Biology and Medicine (Gardener et 

al., 1995). Oppong and Assuah (2015), opined that Poisson and Negative Binomial regression 

models are often used as an alternative model to the Cox model for survival analysis when hazard 

rates are approximately constant during the observation period and when risks associated with an 

event under consideration is minimal (e.g., the incidence of road accidents) in such a case Poisson 

or Negative Binomial Regression model usually replaces with the Cox model. In such a case, there 

is the assumption that the Cox model cannot be quickly used in estimating aggregated data. This 

means that there are a lot of challenges associated with the use of the Cox model in modeling road 

traffic accident data. It is against this background that this study model road traffic crashes in 

Nigeria using Poisson, negative binomial and Generalized Negative Binomial regression models 

between 1960 to 2018. 

 

METHODOLOGY 
This section was discussed under the following sub-headings; Source of data, model specification, 

estimation technique and procedures. 

 

3.2 Source of Data 

Data used in the study was sourced for and extracted from the Nigeria Federal Road safety On-

line Statistical Database. The Variables comprises of annual data extracted from 1960 -2018, 

making it a total of 177 data points. The variables of interest for the study are classified into three: 

fatal, Minor and serious type of accident injury from road traffic crash casualties. Statistical 

package STATA version 14 was used in analyzing the data extracted for the study. 
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3.3 Model Specification  
In line with the specific objective of this study, the models adopted for this study are Poisson 

regression, Generalized Poisson Regression, Negative Binomial Regression and Generalized 

Negative Binomial Regression.  They are derived as shown below; 

 

Poisson Regression Model  

Poisson regression models  are used  basically when facing a problem whereby the outcome of the 

random process can take count values only, for example in a road traffic  crash scenario it makes 

sense to assume that the number of  road crashes that occur in daily, weekly,  monthly or annually 

are  considered  as  count data.  According to Philip and Sebastian (2015), one of the distributions 

that satisfies such criterion comes from the family of exponential distribution which is the Poisson 

distribution.Let Y be a random variable (the rate at which the road traffic crashes occurs) and let

3  ,2  ,1   , iyi
 be the outcomes of the road traffic crash as an event. The variable Y is said to follow 

Poisson distribution with parameter 0   if the probability function is given by 

!
)(

n

e
nYP

nu

  

Where 3,2,1n  is the number of occurrences of an event and   is defined as ][YE .  One of 

the useful properties of the Poisson distribution is that the variance depends on the mean and also 

the variance is equal to the mean. The generalized linear model can be stated as thus:  

i  =0  +  1 Xi1  + ……..+ kXik       (3.1) 

The two link functions are stated statistically as follows: 

The first link function describes how the mean iiYE )(  which depends on the linear predictor 

 (i) = I         (3.2) 

The second link functions describes how the variance, Var(Yi) depends on the mean  

 Var(Yi) = var()        (3.3) 

whereas the dispersion parameter  is a constant , supposing Yi  is a Poisson distribution  

Then;     Yi Poisson (i), 

E(Yi) = i, var(Yi)   =   I        (3.4) 

Therefore, our variance function; 

  )( iVar          (3.5) 

and the link function must map from (0,). A natural log of the function given as  

)(log)( iei            (3.6) 

 

The generalized linear regression model (GLM), according to Nwankwo and Nwaigwe (2016) has 

to do with allowing the linear model to be related to the response variable through   linked   

function. The link function here is the function that links between the linear model in a design 

matrix and the Poisson distribution function. Supposing a linear regression model given as thus: 
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Yi = iXi  xi          (3.7)  

If XE IRn, is a vector of independent variables  

 Y   = Xx        (3.8) 

Where X is an nx(k + 1) vector of independent variables of predictors, and a column of I’s  is a 

(k + 1) by 1 vector of unknown parameters and  is an n x 1 vector of random error terms with 

mean zero. Therefore, 

E(Y/X) = X          (3.9) 

Recall that the Generalized linear models, where the link function and its transport Y as; 

G(y) = loge (y)                   (3.10) 

 

Therefore, this can be written in more concise form as; 

Loge E(Y/X) = X                   (3.11) 

Thus, given a poisson regression model with parameter  and its input vector X, the predicted 

mean of the associated poisson distribution is given as; 

 E(Y/X) = eXB                   (3.12)  

 

Suppose Yi are independent observation with a corresponding values Xi as the predictor variable, 

then the parameter   can be estimated using the maximum likelihood method. According to 

Nwanko and Nwaigwe, (2016) the model expressed in equation (3.12) can be estimated by 

numerical methods and this is done using the logarithmic transformation of the conditional 

expectation of the dependent and independent variables. He further explained that the probability 

surface of the  maximum – likelihood estimation of  Poisson regression models are  always convex 

form  such that Newton-Raphson of the  gradients –based methods are use as an  appropriate 

estimation techniques.Therefore, suppose Yi is a random variable and it takes non-negative values 

such that i = 1, 2 …… n, where n is the number of observations. Since yi follows a Poisson 

distribution, therefore the probability mass function (PMF) is as thus 

 

,    yi=  0, 1, 2      (3.13) 

With mean and variance as  

 )()( ii yVaryE        

 (3.14) 

Where the conditional mean (predicted mean) of the Poisson distribution as given in equation 

(3.12) above specified as; 

)()( i

x
x

y yEeE           (3.15) 

Where it is the value of the explanatory variable ),.........,( 21 k    are unknown K – 

dimensional vector of regression parameters and the mean of the predicted Poisson distribution is 

given as E(Y/X) and its corresponding variance of Yi as var(Y/X). 

 

Generalized Poisson Regression Model  
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One of the advantages of using the generalized Poisson regression model is that it can be fitted to 

over-dispersion model i.e. where )()( ii yEyVar  as well as under-dispersion, )()( ii yEyVar 

Nwankwo and Nwaigwe, 2016).  Famoye (1993) Wang and Famoye (1997) further suggested that 

when  iy is a count response variable and its follows a Generalized Poisson distribution, the 

probability density function  given that   iy i = 1, 2 ….. n, then       

f(yi) = (yi = yi) = 
   
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 , yi = 0, 1,  ( 3.16) 

 

Where, mean E(yi) = i and variances var(yi) = (+,i)
2    and   is refers to as  the dispersion 

parameter.  Nwakwo and Nwaigwe,(2016) revealed that  generalized Poisson distribution is a 

natural extension of the Poisson distribution. When  = 0, the model in equation (3.21) reduces to 

the Poisson (as in equation 3.13), whereby )()( ii yEyVar  . When > 0, it means  the variance 

)( iyVar  of  the distribution represents count data with over-dispersion if < 0, it means  the 

variance  is less than the expectation  ie )()( ii yEyVar   which simply means that the distribution 

represents count data with under-dispersion. Supposing it is assumed that the mean of the fitted 

value is multiplication i.e. )exp()(  iii
i xe
X

y
E   

Where ie  denotes a measure of exposure, Similarly 1pXxi  vector of explanatory variables and 

1pX  vector of regression parameters (Nwonkwo and Nwaigwe, 2016). 

Negative Binomial Regression (NBR) 
According to Shaw-Pin (1993), negative binomial distribution is used to deal with the problem of 

over-dispersion in count data. Over-dispersion occurs when there is the presence of statistical 

variability in a data set. A situation in which theoretical population mean of a model is 

approximately the same as the sample mean.  It can be further explained that this occurs when the 

observed variance is higher than the variance of a theoretical model, then over-dispersion is said 

to occur. On the other hand, under-dispersion simply means that there was less variation in the 

data than predicted. Over-dispersion is a very common characteristic in applied data analysis 

because in practice, populations are frequently heterogeneous (non-uniform) opposed to the 

assumptions implicit within widely used simple parametric models.  The Negative Binomial 

regression model used in this study was specify as thus: 

 

 3.17 

 

Where the mean is given  
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The variance of yi is given as  thus: 

     3.19 

 

Where  0  the model would be referred to as dispersion parameter. From Eq. (3.25) one can 

see that this model allows the variance to exceed the mean. Also, the Poisson regression model 

can be regarded as a limiting model of the negative binomial regression model as  approaches 0. 

 

Generalized Negative Binomial Regression (NBR) 

The generalized Negative Binomial Regression (NBR) distribution given as thus:  

For 1 > a > 0 and  < 1 we define the generalized negative binomial distribution by 

),,(  nxb = xxnxx

xxnX

Bnn 


 


)1(
]1[!

][
, ,.........2,1,0;0  xn        3.41 

Such that 0),,(  nxb  for  mx  if 0 mn   

 

Similarly, the estimation of Generalized Negative Binomial Regression is done using the 

Maximum Likelihood method of Parameters estimation  

 

3.4 Model Selection Test 

Model selection shall be done using two criteria which include: the Akaike information criteria 

(AIC) and Bayesian information criteria (BIC). It is defined as  below in the two models: 

 AIC(n) =  KL
n


 2

       and  AIC(1) = -2[L – K] 

 

Where K is the number of predictors including the intercept, while AI(1) is usually an output in 

the statistical software applications. L is the maximized value of the likelihood function for the 

model. Similarly, Bayesian information criteria (BIC) according to Hube (2014) have three forms 

of mutations and they include as it is defined in (Schwart, 1978). 

 BIC(R) = D – (df) In (n) 

 B1C(L) = -2L + Kin(n) 

 BIC(Q) = 
n

2
(L – Kin (K)) 

Where;df is the residual degree of freedom, BIC (L) is given as SC in SAS and  

BIC in other software  andL represents the log likelihood  

 

RESULTS 
This section focuses on the presentation of the results of the estimation of the model specified in 

chapter three fitting it to road traffic crash data extracted from Nigeria Federal Road Safety On-

line Statistical Database.  

 

2)( iiyVar  
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Table 4.1: Summary Descriptive Statistics of Accident Data Extracted from Federal Road 

Safety Online Statistical Data Based 

 

 

Variable  Observations Mean  Std-Dev Min  Max 

Fatal 59 3284.6 1699.4 129 6986 

Serious 59 8554.0 5180.6 1520 17352 

Minor 59 7478.2 8201.7 841 19624 

No. of Incid 59 21562.8 17.176 7771 41165 

Source: Researcher’s Computation, 2018 using STATA Version 14. 

 

 
Fig. 4.1: The Histogram Representation of Summary Descriptive Statistics of Accident 

Data. 

 

 

 

Table 4.2:  Multi-Collinearity Test Results 

 Variables VIF 

VIF

1
 

Serious 3.83 0.260943 

Minor 2.050 0.262753 

Fatal 1.02 0.977081 

Mean VIF 2.89  

Source: Researcher’s Computation, 2019 using STATA Version 14. 
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Table 4.3: Estimation Results of Poisson Regression, Poisson Generalized Regression, and 

Negative Binomial Regression  

 

Model Indicator Co-eff Std Error Z P>/z/ 

Poisson 

Regression 

Constant 9.209 0.004 2381.12 0.000 

Fatal  0.0001 5.20e-07 118.62 0.000 

Serious  0.0012 6.22e-07 186.12 0.000 

Minor  -0.00006 3.50e-07 -170.09 0.000 

  P-value   

Deviance  127396.5 0.000   

Chi-square 130361.1 0.000   

AIC 128097.1    

BIC 128105.4    

Negative  

Binomial 

Regression  

Constant 9.178 0.1626 56.44 0.000 

Fatal  0.000872 0.00025 3.18 0.001 

Serious 0.000107 0.00003 4.21 0.000 

Minor  -0.000057 0.00002 -3.75 0.000 

Model fitness     

AIC 1214.342    

BIC 1224.729    

Generalized 

Negative 

Binomial  

Regression  

Constant 1.133261 0.1085 10.44 0.000 

Fatal  0.000144 0.0002 7.40 0.000 

Serious  0.000078 0.00002 3.99 0.000 

Minor  -0.00001 0.00002 -0.67 0.505 

Model fitness     

AIC 1205.164    

BIC 1217.63    

Source: Researcher’s Computation, 2019 using STATA Version 14. 

Table 4.4:  Model Selection and -2log-Likelihood (-2ll). 

Model(s) AIC BIC -2ll Overall Best 

fitted 

Poisson 128097.1 128097.1 -91901.04  

Negative Binomial Regression 1214.342 1224.729 -613.5994  

Generalized Negative 

Binomial Regression 

1205.164 1217.63 -611.2323 1205.164*** 

 

Source: Researcher’s computation, 2018 using STATA version 14. 
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Overall Best fitted Model: Generalized Negative Binomial  

 

5.1 Discussion of Results 

 The annual road traffic crash data collected was fitted with a family of count models such as: 

Poisson Regression, Negative Binomial Regression and Generalized Negative Binomial 

Regression).The data spanned from 1960 –2018.The summary descriptive statistic as shown in 

table 4.1 revealed that the total observations were 177 while the mean of those that have fatal 

accident was (3284.6) and its corresponding standard deviation was (1699.4). Similarly, those that 

have serious accident have the mean value (8554.0) with a standard deviation (5180.6) and minor 

accidence has a mean value of (7478.2) and its corresponding standard deviation was (8201.7).  

However, the total number of the incident recorded between the various degrees of injury has the 

mean value of (21562.8) with a standard deviation (17.176). From the results obtained so far, we 

can conclude that the high mean rated indicator of the various degree of injury related to the road 

traffic crashes that occur within the year under investigation was the total number of the incident 

recorded, followed by serious, fatal and minor injury respectively. 

 

The result of the summary descriptive statistic was synonymous to Shaw-Pin (1993) findings. 

Shaw-Pin (1993), investigated the relationship between truck accidents and geometric design of 

road sections: Poisson versus negative binomial regressions. The result obtained in Shaw-Pin 

(1993) investigation shows that truck   related accident of high frequencies with various degree of 

serious injury across road sections were those that were victims. Although, there were a little 

variations in the two results and the variations in the two results could be attributed to 

methodology, geographical location and duration of the two studies. Figure 4.1 is the statistical 

representation of the various degree of injury sustained in an accident case which is shown on the 

histogram and the result indicates  total number of incident represent  the highest proportion  which  

accounts for about  60.0% of the entire data used in the study  followed by serious cases , fatal  and 

minor respectively. In another development, table 4.2 shows the results obtained from the test for 

multi-collinearity between the variables (indicators) under consideration, this was done  to verify 

whether there exist a perfect linear relationship between  the predictors and the explanatory 

variable  such that  the estimates in the regression model can be  uniquely computed.  

 

From the results obtained the variance inflated factor(VIF) of all the variables have the same value 

(2.89) and according to the rule of thumb, a variable whose variance inflated factor(VIF) are 

greater than 10 may not merit further statistical investigation, however, the result is different here. 

Similarly, the tolerance value (
VIF

1
) value for serious injury (0.260943), Minor injury (0.262753), 

fatal injury (0.977081) and all the value of (
VIF

1
) obtained were lower than 0.1 comparatively to 

the VIF value 10. This simply means that all the variables can be included in linear combination 

with other independent variables and also in subsequent analyses, and modeling of Poisson 
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regression as it was suggested in  Oppong and Assuah (2015), examination in comparative 

assessment of Poisson and negative binomial regressions as best models for road count data and 

Also in Philip and Sebastian (2015) application of Poisson Regression on traffic Safety, the study 

presents a model that explains the traffic fatality by exploring the Poisson regression model using 

two types of explanatory variables – referred to as internal and external factors. The results 

obtained in Oppong and   Assuah (2015), and Philip and Sebastian (2015) for the test for multi-

collinearity seem to agree the present findings. 

 

The results in table 4.3 shows that those who sustained fatal injuries have positive co-efficient 

(0.0001) at the 5% level of significance and this simply means that 1% increase in the cases of 

those who sustained fatal injuries in road traffic crashes in Nigeria during the period under 

investigation may lead to (0.01%) positive effect on the number of observed incidence of the cases 

of road traffic crashes in Nigeria. The z-statistics value (118.62) of the co-efficient of those that 

have fatal injuries  is greater than 2 by the rule of the thumb, showing that the cases of victims of 

road traffic crashes having fatal injuries has a significant effect on number of observed incidence 

of the cases of road traffic crashes in Nigeria. 

 

In another development, the result also revealed that those who sustained serious injuries has 

positive co-efficient (0.0012) at the 5% level of significance and this simply means that 1% 

increase in the cases of those who sustained serious   injuries in road traffic crashes in Nigeria 

during the period under investigation may lead to (0.12%) positive effect on the number of 

observed incidence of the cases of road traffic crashes in Nigeria. The z-statistics value (186.12) 

of the co-efficient of those that have serious injuries  is greater than 2 by the rule of the thumb, 

showing that the cases of victims of road traffic crashes having serious  injuries has a significant 

effect on number of observed incidence of the cases of road traffic crashes in Nigeria. 

 

Similarly, it was also confirmed that the estimate of   those who sustained minor injuries has 

negative co-efficient (-0.00006) at the 5% level of significance which simply means that 1% 

increase in the cases of those who sustained minor injuries in road traffic crashes in Nigeria during 

the period under investigation may leads to (-0.006%) negative effect on the number of observed 

incidence of the cases of road traffic crashes in Nigeria. The z-statistics value (-170.09) of the co-

efficient of those that have minor  injuries  is less than 2 by the rule of the thumb, showing that the 

cases of victims of road traffic crashes having minor   injuries has a negative  significant effect on 

number of observed incidence of the cases of road traffic crashes in Nigeria. 

 

Furthermore, the value of deviance  (127396.5) and Pearson chi-square (130361.1)  greater than 

1, so we can conclude that in estimating road traffic crashes using Poisson regression models the 

degree of injuries sustained from the various  cases of road traffic crashes in  Nigeria suffered from 

over-dispersion. According to Ayunanda, et al (2013), Over-dispersion usually leads models into 

producing biased parameter estimates. The consequences of over-dispersion is that it makes  the 

value of the estimated  standard error to be  wrong as the mean value of the model is not to the 

http://www.iiardpub.org/


International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X P-ISSN 2695-1908,  

Vol 5. No. 3 2019www.iiardpub.org 

 

 

 

 

 

 

IIARD – International Institute of Academic Research and Development 
 

Page 62 

variance as one of the precondition for Poisson regression models.  Subsequently, may lead to 

errors in drawing   inference about the parameters of the model.  

 

To overcome these challenges of modeling counts data, we then resort to the use of negative 

binomial Poisson regression and the generalized negative binomial regression, since both models 

can accommodate and capture dispersion parameter in modeling counts data. However, the result 

in the estimation using Poisson regression model confirmed the assertion of Oluwaseyi and 

Gbadamosi (2017) in their investigation of road traffic Crashes in Nigeria: Causes and 

Consequences. In Oluwaseyi and Gbadamosi (2017) study, it was revealed that Motor vehicle 

crashes are the leading causes of death in adolescent and people in their prime age.  It was also 

confirmed that there has been an expansion in the proportion and absolute number of traffic 

fatalities witnessed in a number of developing countries while the industrial nations are witnessing 

descending trend in the occurrence of accident by more than 20%.  Also, this result corroborates 

Philip and Sebastian (2015) findings in the application of Poisson Regression on traffic Safety. 

However, Philip and Sebastian (2015) study presents a model that explains the traffic fatality by 

exploring the Poisson regression model using two types of explanatory variables – referred to as 

internal and external factors.  

 

In Philip and Sebastian (2015) study, it was revealed that, the variables economic development, 

traffic exposure and demographic development significantly contribute to explain the long term 

cyclical trends, showing that traffic fatality is a complex multivariate system where no single 

variable can solely explain its dynamics. The external factor seasonal trend has the most impact of 

the examined external factors and explains the yearly cyclical pattern by itself. The model 

presented in this study shows high explanatory power and overall good fit to fatality data, making 

it a promising tool for statistical analysis of factors contributing to fatality.  

 

In like manner, the estimation of the negative Binomial Regression shows that all parameters are  

significance level of 5% and it  can be seen that  the p-values of all parameters are smaller than 

0.05. So, the negative binomial regression model revealed all the co-efficient of the various degrees 

of injuries to be positive except the case of minor injury. This confirmed that in estimating the co-

efficient of negative binomial regression, 1% increase in fatal and serious cases of injuries may 

leads to 0.0872 % and 0.0107% respectively increase in the number of observed incidence of the 

cases of road traffic crashes in Nigeria. Also, their z-statistics values are (3.18 and 4.21)  which 

are greater than 2 by the rule of the thumb, this confirming  that fatal  and serious cases  of  injuries  

have great significant effect on number of observed incidence of the cases of road traffic crashes 

in Nigeria. However, the case of those that had minor injury has negative co-efficient (-0.000057) 

at the 5% level of significance which simply means that 1% increase in the cases of those who 

sustained minor injuries in road traffic crashes in Nigeria during the period under investigation 

may lead to (-0.006%) negative effect on the number of observed incidence of the cases of road 

traffic crashes in Nigeria. The z-statistics value     (-3.75) of the co-efficient of those that have 

minor  injuries  is less than 2 by the rule of the thumb, showing that the cases of victims of road 
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traffic crashes having minor  injuries has a negative  significant effect on number of observed 

incidence of the cases of road traffic crashes in Nigeria.  

 

The result obtained here using negative binomial regression in modeling the number of observed 

incidence of the cases of road traffic crashes in Nigeria corroborates Shaw-Pin (1993) study in 

investigating the relationship between truck accidents and geometric design of road sections: 

Poisson versus negative binomial regressions. In Shaw-Pin’s (1993) investigation, it was found 

that Poisson regression model should be used as an initial model for developing the relationship 

between all categories of accidence. Furthermore, it was also opined that if the over-dispersion of 

accident data is found to be moderate or high, both the negative binomial (NB) and Zero Inflated 

Poisson regression models could be explored. Also, the result obtained here further confirmed 

Shaw-Pin’s (1993) assertion in investigation about the relationship between truck accidents and 

geometric design of road sections: Poisson versus negative binomial regressions. Shaw-Pin (1993) 

asserted that under the maximum likelihood method, the estimated regression parameters from all 

the three models were quite consistent and no particular model outperforms the other two models 

in terms of the estimated relative frequencies of truck related accident involvements across road 

sections. In this present study, the result reveal the same assertion as the estimated regression 

parameters from all the three models were quite consistent with the same positive and negative 

sign for fatal, serious and minor injuries sustained in road traffic crashes in Nigeria within  the 

period under investigation. 

Also, the result obtained in this study was in line with Oppong and Assuah (2015) study.  Oppong 

and Assuah (2015) examine comparative assessment of Poisson and negative binomial regressions 

as best models for road count data and found out that negative binomial regression model best fits 

road accidents’ data significantly as compared with the poison regression model. Although, the 

little variation between the two results were due to geographical location and nature of the data 

counts, Oppong and Assuah (2015) study was carried out in Ghana using weekly road accident 

data whereas this present study uses annual data extracted from Nigeria federal road safety online 

statistical data base. 

 

In another development , the estimation of  the generalized  negative Binomial Regression shows 

that all parameters are  significance level of 5% and it  can be seen that  the p-values of all 

parameters are smaller than 0.05. So, the negative binomial regression model revealed all the co-

efficient of the various degrees of injuries to be positive except the case of minor injury. This 

confirmed that in estimating the co-efficient of negative binomial regression, 1% increase in fatal 

and serious cases of injuries may leads to 0.0144% and 0.0078% respectively increase in the 

number of observed incidence of the cases of road traffic crashes in Nigeria. Also, their z-statistics 

values are (7.40and 3.99)  which are greater than 2 by the rule of the thumb, this confirming  that 

fatal  and serious cases  of  injuries  have great significant effect on number of observed incidence 

of the cases of road traffic crashes in Nigeria.  
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However, the case of those that had minor injury has negative co-efficient (-0.00001) at the 5% 

level of significance which simply means that 1% increase in the cases of those who sustained 

minor injuries in road traffic crashes in Nigeria during the period under investigation may leads to 

(-0.001%) negative effect on the number of observed incidence of the cases of road traffic crashes 

in Nigeria. The z-statistics value (-0.67) of the co-efficient of those that have minor  injuries  is 

less than 2 by the rule of the thumb, showing that the cases of victims of road traffic crashes having 

minor injuries has a negative  significant effect on number of observed incidence of the cases of 

road traffic crashes in Nigeria. 

 

6.2 Conclusion 

The research was aimed at first, to examine the significance of the occurrence and incidence of 

road traffic crashes in Nigeria and secondly to assess the factors that may likely contribute to road 

traffic crashes in Nigeria. 

The Poisson regression, Poisson Generalized Regression, Negative Binomial regression, and 

Generalized Negative Binomial Regression for the occurrence of road traffic crashes in Nigeria 

were considered.   

 

6.3 Recommendations 

Sequel to the results of the findings, the following recommendations were made; 

1. Road traffic fatalities and injuries are, to a great extent, preventable, since the risk of 

incurring injury in an accident is largely predictable and there are many counter measures, 

proven to be effective. The most effective way to reduce fatalities and injuries would be 

through an integrated approach involving close collaboration of many sectors.  

2. Progress is being made in many parts of the world where multi-Sectorial strategic plans are 

leading to reductions in the number of road accidental fatalities and injuries. Such strategies 

focus on four key factors that contribute to the risk of occurrence of a road accident, they 

are; exposure, behavioral factors, road environment, and vehicle factors. Perhaps the least 

used of all road safety intervention strategies are those that aim to reduce exposure to risk.  

3. Risk in road traffic arises out of a need to travel – to have access to work or for education or 

leisure pursuits. Therefore, there is a need to promote not only regional economies in such a 

way that reduces the need for long-distance travel but also self sufficient compact townships 

which would reduce the need for short-distance travel within the cities.  

4. The problem of road accidents in Nigeria also gets aggravated due to mixed nature of road 

traffic on its roads – with pedestrians, bicycles, mopeds, scooters, motorcycles, auto-

rickshaws, taxis, vans, cars, trucks, and buses sharing the same road space. 

5.  In other words, the same road network is used by different categories of motorized and non-

motorized vehicles, of varying width and speed. To reduce the exposure to risk, there is a 

need not only to segregate fast moving vehicles from slow moving vehicles or heavy vehicles 

from light vehicles but also enforce speed limit on fast moving vehicles. Road accidents and 

related injuries and fatalities are highly dependent on the speed of motor vehicles. Empirical 
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evidences suggest that an average increase in speed of 1 Km/h is associated with a 3% higher 

risk of a crash involving an injury. 
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